Application of Geographically Weighted Regression to Investigate the Impact of Scale on Prediction Uncertainty by Modelling Relationship between Vegetation and Climate
نویسندگان
چکیده
Scale-dependence of spatial relationship between vegetation and rainfall in Central Sulawesi has been modelled using Normalized Difference Vegetation Index (NDVI) and rainfall data from weather stations. The modelling based on application of two statistical approaches: conventional ordinary least squares (OLS) regression, and geographically weighted regression (GWR). The analysis scales ranged from the entire study region to spatial unities with a size of 750*750 m. The analysis revealed the presence of spatial non-stationarity for the NDVI-precipitation relationship. The results support the assumption that dealing with spatial non-stationarity and scaling down from regional to local modelling significantly improves the model’s accuracy and prediction power. The local approach also provides a better solution to the problem of spatially autocorrelated errors in spatial modelling.
منابع مشابه
Increasing Accuracy in Analysis Ndvi-precipitation Relationship through Scaling down from Regional to Local Model
Spatial relationship between vegetation and rainfall in Central Kazakhstan has been modelled using Normalized Difference Vegetation Index (NDVI) and rainfall data from weather stations. The modelling based on application of two statistical approaches: conventional ordinary least squares (OLS) regression, and geographically weighted regression (GWR). The results support the assumption that the a...
متن کاملStudy of the Geographically Weighted Regression Application on Climate Data
This study used Geographical Weighted Regression (GWR) technique to find spatial relationship between Elevation and climate (Rainfall, Temperature) in Northern Nigeria using climate (Rainfall, Temperature) data from weather stations from 1980 – 2010 obtained from Nigerian Meteorological Agency (Nimet). From the results of the analysis it was shown that there is significant relationship between ...
متن کاملModeling of the Relationships Between Spatio-Temporal Changes of Traffic Volume and Particulate Matter-2.5 Pollutant Concentration Based on Geographically Weighted Regression (GWR) and Inverse Distance Weighting (IDW) Model: A Case Study in Tehran M
Background and Aim: High concentrations of particulate matter-25 (PM2.5) have been the cause of the unhealthiest days in Tehran, Iran in recent years. This study was conducted with the aim of the spatio-temporal analysis of traffic volume and its relationship with PM2.5 pollutant concentrations in Tehran metropolis, Tehran during 2015-2018, using the Geographic Information System (GIS). Materi...
متن کاملComparison of Geographically Weighted Regression and Regression Kriging to Estimate the Spatial Distribution of Aboveground Biomass of Zagros Forests
Aboveground biomass (AGB) of forests is an essential component of the global carbon cycle. Mapping above-ground biomass is important for estimating CO2 emissions, and planning and monitoring of forests and ecosystem productivity. Remote sensing provides wide observations to monitor forest coverage, the Landsat 8 mission provides valuable opportunities for quantifying the distribution of above-g...
متن کاملComparison of the Performance of Geographically Weighted Regression and Ordinary Least Squares for modeling of Sea surface temperature in Oman Sea
In Marine discussions, the study of sea surface temperature (SST) and study of its spatial relationships with other ocean parameters are of particular importance, in such a way that the accurate recognition of the SST relationships with other parameters allows the study of many ocean and atmospheric processes. Therefore, in this study, spatial relations modeling of SST with Surface Wind Speed (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJSDIR
دوره 3 شماره
صفحات -
تاریخ انتشار 2008